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Abstract—Data sampling is a widely used technique in a
broad range of machine learning problems. Traditional sampling
approaches generally rely on random re-sampling from a given
dataset. However, these approaches do not take into consideration
additional information, such as sample quality and usefulness. We
recently proposed a data sampling technique, so-called, sample
subset optimization (SSO). SSO technique relies on a cross-
validation procedure for identifying and selecting the most useful
samples as subsets. In this study, we describe the application of
SSO techniques to imbalanced and ensemble learning problems,
respectively. For imbalanced learning, SSO technique is employed
as an under-sampling technique for identifying a subset of highly
discriminative samples in the majority class. In ensemble learn-
ing, SSO technique is utilized as a generic ensemble technique
where multiple optimized subsets of samples from each class are
selected for building an ensemble classifier. We demonstrate the
utilities and advantages of the proposed techniques on a variety of
bioinformatics applications where class imbalance, small sample
size, and noisy data are prevalent.

Index Terms—Sample subset optimization, under-sampling,
imbalanced learning, ensemble learning, bioinformatics applica-
tions

I. INTRODUCTION

DATA sampling is a key technique that has been utilized
in a broad range of machine learning and data min-

ing problems such as imbalanced learning [1] and ensemble
learning [2]. In imbalanced learning, where samples from one
class (majority class) significantly outnumber samples from
the other class (minority class), a sampling technique may
be employed to select a subset of samples from the majority
class so as to create a more balanced class distribution. In
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ensemble learning, samples may be randomly re-sampled to
create multiple data subsets which are subsequently used
to train a group of classifiers each project the data in a
different model. Many sampling techniques employed in these
learning tasks rely on random re-sampling where samples are
randomly selected with or without replacement. One of the
main disadvantages of random re-sampling based approach is
that it does not utilize additional information such as sample
quality and their discriminative ability among classes, which
could be useful in data classification. We recently proposed
a data sampling technique called sample subset optimization
(SSO) to specifically looking for the most discriminative
sample subsets from all available samples [3]. In this paper,
we describe the application of SSO techniques to imbalanced
learning and ensemble learning, respectively. For imbalanced
learning, SSO technique is employed as an under-sampling
technique. Whereas for ensemble learning, SSO technique
is utilized as a generic ensemble technique. Particularly, we
demonstrate the utilities of these applications in addressing
a variety of bioinformatics problems where class imbalance,
small sample size, and noisy data are prevalent.

Class imbalance learning has recently gained considerable
attention especially in bioinformatics domains that, quite often,
only a limited number of positive samples are available where-
as the number of negative controls is relatively much more
abundant. Typical examples include the identification of genes
[4], promoters [5], or splice site [6] from DNA sequences
where the positive samples are inherently rare compared to
their negative counterparts [7]. The classification task in such
a situation is often complicated by the highly imbalanced class
distribution where the negative samples from the majority
class are over-represented by a learning model compared to
the positive samples from the minority class, leading to an
undesirable bias in the model decision boundary. For example,
popular classifiers such as support vector machine (SVM) and
k-nearest neighbor (kNN) are found to be very sensitive to
the imbalanced class distribution [8], [9], and may perform
sub-optimally when applied to the imbalanced dataset without
skewness correction.

Data sampling is a popular approach to address the imbal-
anced class distribution [10]. In the simplest form, samples
from the majority class are randomly removed to match the
minority class (refer to as random under-sampling), or samples
from the minority class are randomly duplicated to match
the majority class (refer to as random over-sampling) [11].
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However, as aforementioned these simple approaches do not
distinguish which samples are more informative, and may
remove representative samples or increase noise and introduce
duplications [1]. A more sophisticated approach known as
SMOTE is to synthesize “new” samples using original samples
in the dataset [12]. Yet, for dataset with a large number of sam-
ples and highly imbalanced class distribution, a large number
of synthetic samples will be introduced, which may substan-
tially increase noise in the data. In [13], several evolutionary
approaches have been proposed for creating roughly balanced
dataset by using balance level and/or classification measures.
In this study, we extend SSO-based data sampling along this
line of research by using a cross-validation procedure and a
frequency ranking procedure to detect the most useful samples
from the majority class and ‘intelligently’ (as opposed to
randomly) under-sample the given dataset.

Ensemble learning is a popular technique in bioinformatics
applications [14], [15]. A key synergy between ensemble
learning and imbalanced learning is the use of data sampling
techniques. In ensemble learning, training samples are re-
sampled multiple times to build multiple models each learns
the decision boundary with a different sample subset, weights,
and/or feature subset. This is particularly beneficial when
the number of samples is limited which is very common in
bioinformatics applications [16] due to the high expenses on
sample collection and processing.

There are many ensemble methods. Among them, bagging
[17], boosting [18], and their variants [19] are the most popular
approaches and are frequently applied to bioinformatics appli-
cations [20], [21]. With bagging, training data are re-sampled
with replacement to produce multiple training subsets, and
multiple classifiers are built each using a different training
subset. The boosting algorithm creates multiple classifiers
iteratively. That is, an initial classifier is built with the original
training data, and based on the misclassification in each
iteration the algorithm adds more weights to samples that are
misclassified in previous iteration and builds a new classifier
for the modified training data. The ensemble is created by
combining classifiers from multiple iterations. Generally, de-
cision tree or decision stump is used to form the base classifier
of the ensemble because (1) they can be learnt efficiently and
(2) they are unstable to perturbed data which brings diversity to
the ensemble [22]. While bagging algorithm relies on random
sampling and therefore works in a random manner, boosting
algorithm tries to classify the most “difficult” samples by
greedily increasing the weight of “difficult” samples. Neither
of them takes sample quality and/or sample usefulness into
account and is susceptible to outliers and noisy data.

In contrast, by using SSO for ensemble learning, the training
samples are used selectively according to their discriminative
ability for creating base classifiers. That is, only samples that
are deemed useful by SSO will be used for base classifier train-
ing. We show that SSO-based ensemble approach can improve
the quality of base classifiers and increase the classification
accuracy of the ensemble.

The rest of the paper is organized as follows: In Section II,
we introduce the SSO technique. In Section III, we formulate
the SSO procedure for imbalanced learning and ensemble

learning. Section IV details the experimental setups, and
Section V presents the experimental results. We conclude in
Section VI and outline the future work.

II. SAMPLE SUBSET OPTIMIZATION

The key idea of sample subset optimization (SSO) is to
select a subset of all available samples by minimizing the
expected error using a cross-validation procedure on the train-
ing data. Let us formulate the expected k-fold cross-validation
error term as follows:

ε̂cvk =
1

n

k∑
i=1

n/k∑
j=1

| y(i)j − p(t
(i)
j |θ

(i), x(i)j )) |

where n is the number of samples, and k is the number of
folds. y(i)j denotes the given class label of the sample j from
the test fold i. p(t(i)j |θ(i), x(i)j ) denotes the prediction of the
jth sample from the test fold i using a feature vector x(i)j with
a model p(.) parameterized by θ(i). In particular θ(i) is derived
from the training fold which could be formed by combining
some or all samples but not those from fold i. The predicted
value of the jth sample is denoted as t

(i)
j .

For each fold i, SSO attempts to identify a subset of the
most useful training samples denoted as s(i) from which a set
of parameters θ(i)(s(i)) is learnt and subsequently used for
parameterizing a prediction model p(.). This can be denoted
as to minimize the following quantity:

min
s(i)

ε̂
(i)
cvk =

k

n

n/k∑
j=1

| y(i)j − p(t
(i)
j |θ

(i)(s(i)), x(i)j )) |

The above can be achieved in an iterative manner by maxi-
mizing a fitness function such as 1− ε̂

(i)
cvk. In this maximizing

process, a sequence of s(i)1 , s
(i)
2 , ..., s

(i)
g is generated. The op-

timization terminates when a predefined iteration g is reached
and the sample subset s(i)g from the last iteration is saved as an
optimized subset. If a population-based optimization approach
such as particle swarm optimization (PSO) [23] or genetic
algorithm (GA) is applied, multiple optimized sample subsets
(denoted as s(i)g ) can be obtained in a single optimization
run. We call such a population-based approach the batch
optimization approach.

Repeating the above procedure for each of all k folds in
the cross-validation partitioning, we obtain s(1)g , s(2)g , ..., s(k)g

each one is optimized by a different test fold and contains a
population of optimized sample subsets.

III. THE PROPOSED SSO-BASED ALGORITHMS

In this section, we describe the design and the application
of SSO-based algorithms for (1) imbalanced and (2) ensemble
learning.

A. SSO-based Imbalance Learning

By using SSO for under-sampling, the goal is to select a
subset of samples from the majority class which can evenly
be combined with the samples from the minority class so that
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the subset could best represent the decision boundary between
the two classes.

Suppose that we use PSO for optimization, then for each
sample from the majority class, a dimension in the particle
space is assigned. Assuming that we have d majority samples
for a training fold, a “particle” in PSO can be coded as
an indicator function set P = {I1, I2, ..., Id}. For each
dimension, an indicator function Ij takes value “1” when
the corresponding jth sample is included to train a classifier.
Similarly, a “0” denotes that the corresponding sample is
excluded from training. The fitness function for each fold is
1− ε̂

(i)
cvk.

GA can also be used for optimization. Here the major-
ity samples are coded as an indicator function set P =
{I1, I2, ..., Id} on a “chromosome” of GA. Similarly, an
indicator function Ij takes either “1” or “0” corresponding
to select or exclude the jth sample from training a classifier.
Standard genetic operations such as mutation and crossover
can be applied to optimize the fitness function of each fold
1− ε̂

(i)
cvk.

One approach to summarize the final result is to rank the
samples from the majority class by the number of times they
are included in the optimized subsets of s(1)g , s(2)g , ..., s(k)g .

Algorithm 1 summarizes this procedure in pseudo code.
Assuming we provide the algorithm an imbalanced dataset Do

and a cross-validation fold size of k, line 4 sets the optimized
subsets S = Ø and the algorithm goes into the loop by applying
a stratified k-fold cross-validation to generate training and
validation sets. For each pair of training and validation sets,
they are subsequently used by function ‘SSO(.)’ to select opti-
mized sample subsets from the majority class s(i)g which when
combined with samples from the minority class minimizes
the classification error on model h. The optimized subsets
from all k folds are saved in S. Once the cross-validation
procedure is completed, the function ‘generateBalanceData(.)’
is applied to rank the samples from majority class that are
most frequently included in optimized subsets S and the most
frequently selected majority samples are selected to match the
number of minority samples to generate a balanced dataset D∗.
Then, a classifier Cθ is trained using this balanced dataset.

Algorithm 1 SsoSampling
1: Input: original dataset Do; CV fold k
2: Output: balanced dataset D∗; classifier Cθ

3: // generate optimized sample subsets
4: S = Ø;
5: for i ∈ {1 : k} do
6: traini ← CV(Do, i, trainFold=TRUE);
7: validi ← CV(Do, i, trainFold=FALSE);
8: // apply SSO to select samples from majority class
9: s(i)g ← SSO(traini, validi, h, maj=TRUE);

10: S ← S ∪ s(i)g ;
11: end for
12: D∗ ← generateBalanceData(Do, S);
13: // train a single classifier
14: Cθ ← train(D∗, h);
15: return (D∗, Cθ);

B. SSO-based Ensemble Learning

The formulation of SSO-based ensemble learning is differ-
ent from imbalanced data sampling in that all samples d from
both the majority class and the minority class in the dataset
are mapped to the indicator function set P = {I1, I2, ..., Id}.
Similarly, by using the fitness function 1 − ε̂

(i)
cvk and an

optimization technique such as PSO, a population of optimized
sample subsets sg can be generated in batch. Performing the
above for each of the all k folds in cross-validation, we
have s(1)g , s(2)g , ..., s(k)g . In this case each subset contains the
selected samples from both classes. In contrast, in imbalanced
sampling only samples from the majority class are selected
while all samples from the minority class are used. Since a
population of optimized sample subsets is produced each time,
a population of base classifiers can be trained in a single cross-
validation run and the ensemble classifier can be obtained
efficiently by combining these base classifiers.

The SSO-based ensemble learning algorithm is summarized
in Algorithm 2. Similar to SSO-based sampling, the required
input is the original dataset Do and the cross-validation fold
size k. The algorithm then sets the optimized subsets S = Ø
and goes into the k-fold cross-validation to generate training
and validation sets. For each pair of training and validation
sets, the ‘SSO(.)’ function is applied to generate optimized
sample subsets by considering samples from both classes that
could minimize cross-validation errors. After obtaining all k
folds of optimized sample subsets S, the function ‘generateOp-
timizedData(.)’ is applied to create multiple optimized dataset-
s. This is achieved by taking the original dataset Do and the
optimized sample subsets S as inputs and generates multiple
datasets each contains samples indexed in an optimized sample
subset sg . The optimized datasets are subsequently used for
training an ensemble classifier EΘ by calling the function
‘ensemble(.)’ which uses the majority voting rule to combine
all base classifiers each trained on a optimized dataset in D∗.

Algorithm 2 SsoEnsemble
1: Input: original dataset Do; CV fold k
2: Output: balanced datasets D∗; ensemble classifier EΘ

3: // generate optimized sample subsets
4: S = Ø;
5: for i ∈ {1 : k} do
6: traini ← CV(Do, i, trainFold=TRUE);
7: validi ← CV(Do, i, trainFold=FALSE);
8: // apply SSO to select samples from both classes
9: s(i)g ← SSO(traini, validi, h, maj=FALSE);

10: S ← S ∪ s(i)g ;
11: end for
12: // generate multiple optimized datasets
13: D∗ ← generateOptimizedData(Do, S);
14: // train an ensemble classifier
15: EΘ ← ensemble(D∗, h);
16: return (D∗, EΘ);

The parameters of PSO and GA are summarized in Table
I. They were found to give good empirical results in our
experiments.
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TABLE I
PARAMETERS USED FOR PSO AND GA OPTIMIZATIONS.

Optimizer Parameter Value
PSO iteration 100

cognitive constant 1.43
social acceleration constant 1.43

inertia weight 0.689
velocity boundary 0.018 – 0.982

GA iteration 100
selection Roulette wheel

crossover probability 0.7
mutation probability 0.1

IV. EXPERIMENT SETUPS

A. Synthetic Datasets

Synthetic datasets were generated for analyzing the behavior
of SSO-based algorithms. For SSO-based under-sampling,
we generated 20 samples each with two features for the
majority class using a normal distribution N (5,1) and 10
samples each with two features for the minority class using
a normal distribution N (7,1). Five samples as “outliers” were
introduced to the majority class but were generated from the
normal distribution of the minority class. This gives a class
ratio of 2:5.

The behavior of SSO-based ensemble learning was also an-
alyzed in a similar manner. Particularly, we created a synthetic
dataset which contains 20 samples each with two features for
each of the two classes, generated from normal distributions of
N (5,1) and N (7,1), respectively. For each class, five “outlier”
samples were introduced by swapping the class labels. This
gives a class ratio of 1:1.

B. Bioinformatics Applications

1) Imbalanced Data Sampling: The imbalanced class dis-
tribution is common in many bioinformatics tasks. We selected
five datasets which represent four different bioinformatics
applications. These include miRNA identification, protein lo-
calization prediction, promoter identification from DNA se-
quences, kinase substrate prediction from protein phosphory-
lation profiling. The dataset of miRNA contains 691 positive
samples and 9,248 negative samples, which has a class ratio
of 0.075. Each sample is represented by 21 features [24]. One
of the key application in protein functional annotation is to
distinguish membrane proteins from proteins localized in other
cellular compartments [25]. The protein localization dataset
obtained from study [26] contains 258 membrane proteins
and 1,226 proteins from other cellular compartments each
one is represented by 8 protein features (a class ratio of
0.21). For promoter sequence identification, we obtained a
human promoter dataset and a drosophila promoter dataset.
The human promoter dataset contains 471 promoter sequences
and 5,131 ccoding sequences (CDS) and intron sequences with
a class ratio of 0.092. As for drosophila promoter dataset,
it contains 1,936 promoter sequences and 2,722 CDS and
intron sequences with a class ratio of 0.71. We encoded the
samples from the two promoter datasets into 16 dinucleotide
features according to Rani et al. [27]. The kinase substrate
phosphorylation dataset is obtained from [28]. The data were

curated using phosphosites database [29] and it contains 20
known substrates of protein kinase Mek and 1,000 negative
phosphorylation sites. Each phosphorylation site is represented
by the level of inhibitions and sequence motif.

2) Ensemble Learning: The datasets included in ensemble
learning represent a wide range of biomedical and bioin-
formatics applications. The biomedical datasets included for
ensemble learning were from studies conducted on diabetes of
Pima Indian population [30] and heart disease [31], while the
gene expression profile on leukemia [32] and liver cancer [33]
were included for representing the small sample size and high
feature dimension setting in microarray studies. Compared
to the above imbalanced datasets, these four datasets have a
relatively balanced class distribution. The diabetes dataset has
268 positive and 500 negative samples each one is represented
by 8 biomedical features. The heart disease dataset consist of
120 positive and 150 negative samples, and 13 biomedical
features are used to describe each sample. For the leukemia
dataset, the sample size is 45 for ALL and 25 AML. For the
liver cancer dataset, there are 82 tumor samples versus 75
non-tumor samples. For leukemia and liver cancer datasets,
median normalization and scaling were applied to normalize
the data. We calculated the between-group to within-group
sum-of-square (BSS/WSS) statistics [34] for each gene, and
selected 100 most differentially expressed genes.

C. Overall Experimental Procedure

We utilized a double-layered cross-validation procedure
for evaluating the performance of the SSO-based algorithms
(Figure 1). The original dataset was initially partitioned into
training and validation sets using a 5-fold cross-validation.
This is referred to as the external 5-fold cross-validation. For
each external cross-validation training partition, it was further
partitioned by a second cross-validation to form the internal
training and validation datasets for SSO optimization and
sample selection. This second cross-validation is referred to as
the internal 2-fold cross-validation. The internal 2-fold cross-
validation procedure maximizes the information in sample
optimization and minimizes the overlap of selected samples by
using each of the two folds for sample selection and sample
optimization once only. The external validation sets were then
used for validation on models derived from their respective ex-
ternal training sets. This performance evaluation procedure is
described in Algorithm 3. The external 2-fold cross-validation
and 10-fold cross-validation were also evaluated on protein
localization prediction dataset to study the influence of k value
in the cross-validation procedure on the final result.

In SSO-based under-sampling experiments, we used kNN
classifier for evaluation as kNN is known to be sensitive to
the imbalanced class distribution. We implemented both PSO
(denoted as SSO-PSO) and GA (denoted as SSO-GA) for op-
timization. The optimization procedure was guided by a kNN
classifier (k=3 was used for all kNN classifiers unless other-
wise noted) and the internal 2-fold cross-validation. The final
kNN models derived from the optimized balanced datasets
were evaluated by the external 5-fold cross-validation. The
area under the ROC curve (AUC) [37] value was calculated
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TABLE II
SUMMARY OF DATASETS, BIOINFORMATICS APPLICATIONS, TASK TYPE, DATA AVAILABILITY, AND DATA STATISTICS.

Bioinformatics Application Task Type Sample Size Minor Class Major Class Number of Features Availability
Drosophila promoter identification imbalanced learning 4658 1936 2722 16 from [35]

Protein localization prediction imbalanced learning 1484 258 1226 8 from [36]
Human promoter identification imbalanced learning 5602 471 5131 16 from [35]

miRNA identification imbalanced learning 9939 691 9248 21 from [24]
Kinase substrate prediction imbalanced learning 1020 20 1000 5 from [28]

Diabetes patient classification ensemble learning 768 268 500 8 from [36]
Heart disease patient classification ensemble learning 270 120 150 13 from [36]

Leukemia subtype classification ensemble learning 70 25 45 100∗ from [32]
Liver cancer classification ensemble learning 157 75 82 100∗ from [33]

∗Top-100 differentially expressed genes ranked by between-group to within-group sum-of-square (BSS/WSS) statistics.

Fig. 1. A schematic illustration of the double-layered cross-validation
procedure adopted in this study. The original dataset was initially partitioned
by an external 5-fold cross-validation, forming the training and validation
sets. The training sets from the external cross-validation were each further
partitioned by a second internal cross-validation to form the partitions for
SSO modeling. The validation sets from the external cross-validation were
reserved for model validation.

Algorithm 3 Double-layered CV
1: Output: mean AUC value
2: auc = Ø;
3: for i ∈ {1 : 5} do
4: exTraini ← CV(Do, i, trainFold=TRUE);
5: exV alidi ← CV(Do, i, trainFold=FALSE);
6: Si = Ø;
7: if task = sampling then
8: // obtain a balanced classifier
9: Ci ← SsoSampling(exTraini, k=2)

10: else
11: // obtain an ensemble classifier
12: Ci ← SsoEnsemble(exTraini, k=2)
13: end if
14: auci ← evaluate(exV alidi, Ci);
15: auc← auc ∪ auci;
16: end for
17: return mean(auc);

for each fold and the mean from multiple folds was considered
as a result of a test run. We performed 30 test runs to obtain the

consensus performance using different random splitting point
on each cross-validation.

In SSO-based ensemble learning experiments, we used de-
cision tree (J48 implementation) as the base classifier because
it is sensitive to small perturbation on datasets. We compared
the performance with J48 alone and the ensembles from using
bagging and boosting algorithms. PSO was used for opti-
mization and the SSO-based ensemble is denoted as SSOE-
PSO to distinguish those from imbalanced data sampling.
During sample subset optimization, SSOE-PSO was guided
by a decision tree and the internal 2-fold cross-validation. For
each optimized subset, it was used to train a decision tree and
the ensemble was formed by aggregating these decision trees
with majority voting. The validation sets from the external 5-
fold cross-validation were used for performance evaluation and
the average result was treated as a test run. The ensemble sizes
of 5, 10, 20, 30, 40 and 50 were tested. For each ensemble
size, we repeated 10 test runs each with a different random
splitting point on cross-validation.

V. RESULTS

A. SSO-based Under-sampling

1) On Synthetic Dataset: Figure 2a shows the decision
boundary of a kNN on the original imbalanced dataset while
Figure 2b shows the decision boundary of a kNN on one
of the optimized subset using PSO for optimization. Three
out of five outlier samples were removed after sample subset
optimization. Note that this is a randomly selected subset from
a population of many more subsets because both PSO and
GA produced a population of optimized subsets in a single
run. By counting the number of times each sample from the
majority class appears in the optimized sample subsets, we
could rank them from the most frequently selected ones to
the least selected ones (Figure 2c). Figure 2d depicts the most
frequently selected samples from the majority class after SSO
procedure. All outliers were removed after the ranking and
selection of the most useful majority samples. It is worth
noting that while the decision boundary in Figure 2b closely
resemble the final decision boundary in Figure 2d. the final
decision boundary generated from ranking a population of all
optimized sample subsets (performed and shown in Figure 2c)
is expected to be less variant and therefore more robust for
unseen data prediction.
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Fig. 2. SSO-based under-sampling on the synthetic dataset. The decision
boundaries were created by using a kNN (k=3) classifier with Euclidean
distance. (a) The decision boundary of kNN on the initial dataset that has
imbalanced class distribution and five outliers. (b) The decision boundary
on a dataset after SSO-based optimization. (c) Samples from the majority
class were ranked by their frequency of being included in optimized sample
subsets (i.e. “Majority 1”, “Majority 2”, etc.). The larger the circle, the more
frequent a sample was included in the optimized sample subsets. (d) The
decision boundary on the balanced dataset. The balanced dataset was formed
by selecting top ranked samples from the majority class to match the number
of samples in the minority class.

2) Bioinformatics Applications: We evaluated SSO-based
under-sampling technique in four bioinformatics application-
s (as described in previous section) where the learning is
confounded by highly imbalanced class distribution. The per-
formance of SSO-PSO and SSO-GA were compared with
random under-sampling (RUS), random over-sampling (ROS),
and SMOTE sampling techniques. Figure 3a-e show the clas-
sification results using the balanced dataset after applying each
sampling method. For each sampling method, 30 test runs
where conducted and the boxplots were used to summarize
their performance.

It is evident that SSO-based under-sampling with kNN clas-
sification achieved, on average, the highest AUC values from
all of the four datasets. We also observed that under-sampling
techniques (SSO-PSO, SSO-GA, and RUS) performed sig-
nificantly better than over-sampling techniques (ROS and
SMOTE). This may be due to the fact that a large number
of duplicated or artificial samples were introduced by over-
sampling techniques for highly imbalanced datasets with a
large sample size. Under-sampling techniques, however, do not
cause such duplications. Within under-sampling approaches,
SSO techniques helped to identify more useful samples from
the majority class; thus, it performed better than random under-
sampling approach. To investigate the impact of the k value
on the external cross-validation procedure, we evaluated the
k value of 2, 5, and 10-fold cross-validation on the protein
localization dataset (Figure 3f). We found that the influence
of k is minor on the final classification results. The k value
of 5 was used in the rest of the experiments.
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Fig. 3. Comparison of different methods for imbalanced data sampling and
classification. The methods included in comparisons are SSO-PSO, SSO-GA,
random under-sampling (RUS), random over-sampling (ROS), and SMOTE
sampling. From (a) to (e), for each method, the classification accuracies were
calculated from external 5-fold cross-validation repeated 30 times each with a
different splitting point on each of the five datasets, respectively. The boxplots
summarize the classification accuracies of 30 evaluation runs. (f) shows the
classification results of each sampling method on protein localization dataset
using the k value of 2, 5, and 10 for k-fold cross-validation.

To prove that the improvements are statistically significant,
we followed [38] and adopted the Wilcox signed rank test
to compare the performance of SSO-PSO and SSO-GA with
those of the other three methods. Table III shows the p-values
for the comparisons. For those have a p-value smaller than
10−10, we denoted them as p < 1.0×10−10. In most cases, the
performance of SSO-based methods were significantly better
than the other three methods with a p-value smaller than 0.05.

B. SSO-based Ensemble Learning

1) On Synthetic Dataset: The behavior of SSO on ensemble
learning was similar to those on imbalanced sampling. As
shown in Figure 4a, the initial dataset contains 5 outliers for
each class. Figure 4a also shows the classification boundary
created by a decision tree using the initial dataset whereas
Figure 4b-d each shows a decision tree classification boundary
after using SSO optimization procedure. Figure 4b-d were se-
lected as examples to represent the typical decision boundaries
from the population of all SSO optimized sample subsets.
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT SAMPLING METHODS ON IMBALANCED LEARNING DATASETS USING WILCOX SIGNED RANK TEST.

Algorithms Drosophila promoter Protein localization Human promoter miRNA identification Substrate prediction
SSO-PSO vs. RUS p = 1.8× 10−9 p = 2.3× 10−4 p = 1.5× 10−4 p = 1.2× 10−2 p = 3.9× 10−7

SSO-GA vs. RUS p = 4.4× 10−5 p = 7.9× 10−4 p = 4.6× 10−4 p = 4.0× 10−5 p = 5.4× 10−8

SSO-PSO vs. ROS p < 1.0× 10−10 p < 1.0× 10−10 p < 1.0× 10−10 p < 1.0× 10−10 p < 1.0× 10−10

SSO-GA vs. ROS p < 1.0× 10−10 p < 1.0× 10−10 p < 1.0× 10−10 p < 1.0× 10−10 p < 1.0× 10−10

SSO-PSO vs. SMOTE p < 1.0× 10−10 p < 1.0× 10−10 p < 1.0× 10−10 p < 1.0× 10−10 p < 1.0× 10−10

SSO-GA vs. SMOTE p < 1.0× 10−10 p < 1.0× 10−10 p < 1.0× 10−10 p < 1.0× 10−10 p < 1.0× 10−10
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Fig. 4. SSO-based ensemble learning on the synthetic dataset. The decision
boundaries were created by using a decision tree (J48) classifier. (a) The
decision boundary of a decision tree on the initial dataset that has five outliers
in each of the two classes. (b) An example of a horizontal decision boundary
on a dataset after SSO-based sample subset selection. (c) An example of
a vertical decision boundary on a dataset after SSO-based sample subset
selection. (d) An example of a rectangle decision boundary on a dataset after
SSO-based sample subset selection.

Specifically, Figure 4b shows a decision tree model in
which a horizontal decision boundary is obtained from an SSO
optimized sample subset. Compared to the initial dataset, 7
out of 10 outliers, which were introduced to the two classes
artificially, have been removed. Figure 4c shows a different
example that a decision tree model with a vertical decision
boundary was obtained from the SSO optimized sample subset.
Similarly, 6 out 10 outliers have been removed after SSO
optimization. Figure 4d shows another typical decision tree
model where both feature 1 and feature 2 were used as the
splitting points in the model to from a rectangle decision
boundary. These three examples illustrated that the diversity
and the improved quality of the base classifiers of which the
ensemble classifier is comprised.

2) Bioinformatics Applications: The classification results
from SSO-based ensemble with PSO (denoted as SSOE-PSO),
Bagging, and Boosting are shown in Figure 5. The error bar
represents the standard deviation of the classification over
10 independent test runs, except the results of the Boosting
algorithm, because it is deterministic in terms of model
construction. For each ensemble algorithm, the ensemble size

of 5, 10, 20, 30, 40, and 50 were evaluated. Table IV shows
the AUC values of a single decision tree on each dataset and
the mean AUC values of each ensemble algorithm obtained
by averaging across different ensemble sizes.
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Fig. 5. Sample classification comparison. The y-axis indicates the classifi-
cation accuracy in terms of AUC and the x-axis indicates the number of base
classifiers used to form an ensemble. For each method, the classification accu-
racies were calculated from a 5-fold cross-validation repeated 10 times each
with a different data partition. The middle points of the performance curves
are the averages of the classification accuracies from these 10 evaluation runs
and the error bars are the standard deviations.

We observed that ensemble algorithms significantly im-
proved upon the single classifier of decision tree. In addition,
as shown in Figure 5 and Table IV, SSOE-PSO is more
accurate than Bagging and Boosting in all cases, indicating
that sample subsets optimizaiton is indeed a viable procedure
to improve ensemble accuracy. Bagging seems to be less
successful, and this may attribute to its random procedure
in subset generation. From this perspective, Boosting is more
successful because the importance of the samples are updated
progressively in each iteration. However, in the training pro-
cess of Boosting, all training samples are considered and the
highest classification weights are always given to these most
“difficult” samples which could be the outliers of the dataset.
Instead of trying to classify the most “difficult” samples
aggressively, the proposed SSO-based ensemble technique
attempts to utilize the most representative samples from the
training set which may have a better generalization property
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on unseen data classification.

TABLE IV
PERFORMANCE OF DIFFERENT ENSEMBLE METHODS AND A SINGLE

TREE IN TERMS OF AUC VALUE. THE AUC VALUE FOR THE ENSEMBLE
METHODS ARE THE AVERAGE ACROSS DIFFERENT ENSEMBLE SIZES.

Algorithms Diabetes Heart Leukemia Liver
J48 (single tree) 0.576 0.711 0.806 0.883

Mean of Bagging 0.604 0.760 0.912 0.912
Mean of Boosting 0.579 0.766 0.918 0.916

Mean of SSOE-PSO 0.645 0.779 0.930 0.925

The improvement of ensemble classifier compared to single
classifier is often attributed to the diversity of individual
classifiers [22]. To investigate whether SSOE-PSO produced
base classifiers are identical, we decomposed the ensemble
classifiers and evaluate the performance of each base classifier.
Figure 6 shows the AUC values of individual base classifiers
(J48) and their ensemble create from SSOE-PSO. The results
are divided with respect to the dataset and then further
divided with respect to the external 5-fold cross-validation
partition. The diversity of the base classifiers are indicated
by their varied performance and the ensemble classifiers are
generally more accurate compared to most of the individual
base classifiers.
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Fig. 6. Ensemble decomposition. Comparison of AUC values of each base
classifiers in SSOE-PSO (denoted as blue points) with the AUC value of the
majority voting of base classifiers (denoted as a red line). For each dataset, the
result is divided with respect to the fold of an external 5-fold cross validation.

The Friedman rank-sum test was applied to measure the
performance statistically. Since the performance of the ensem-
ble models with different ensemble sizes may not follow any
symmetric distribution, we used the Friedman rank-sum test
as it transfers the AUC values into ranks for each ensemble
method and perform the comparison based on the ranks
only. Table V summarizes the performance of SSOE-PSO
compared to Bagging and Boosting, respectively. For diabetes,
heart disease, and liver cancer datasets, the improvement was
significant at α=0.05, the commonly used significance level.
The performance on the Leukemia dataset has a marginal

significance (α=0.1). Overall, the results indicate that SSO-
based ensemble performs statistically better than Bagging and
Boosting ensembles.

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT ENSEMBLE METHODS IN

TERMS OF FRIEDMAN RANK-SUM TEST

Algorithms Diabetes Heart Leukemia Liver
SSOE-PSO vs. Bagging p≈0.01 p≈0.01 p≈0.1 p≈0.01
SSOE-PSO vs. Boosting p≈0.01 p≈0.01 p≈0.1 p≈0.01

For further assessment of SSO on sample selection, we
extracted the 50% most frequently selected samples from
Leukemia dataset while employing SSOE-PSO for building
an ensemble classifier of 100 base classifiers. Figure 7a shows
the hierarchical clustering of the 50% most frequently selected
samples using the top 100 genes filtered by BSS/WSS. By
cutting the tree dendrogram into three clusters, we observe two
heterogynous acute myeloid leukemia (AML) clusters and one
acute lymphoblastic leukemia (ALL) cluster. The Leukemia
dataset contains 25 AML samples in which 24 were frequently
selected by SSO and were clustered correctly by allowing them
to be grouped into two separated clusters. There are 45 ALL
samples in the initial dataset from which only 10 were the
most frequently selected ones (at the 50% cutoff) and 9 of
them were clustered into a single cluster. Compared to the
clustering of the entire dataset (Figure 7b), only 17 AML
samples were clustered correctly under the same conditions.
The other 8 AML samples (in grey color) were clustered with
ALL samples and are therefore indistinguishable from ALL
samples.

This result indicates that (1) almost all AML samples are
important according to SSO procedure whereas only a small
subset of ALL samples is sufficient to define the class profile;
(2) there are two types of AML samples and they are best
distinguished with ALL samples by including a subset of most
representative ALL samples; and (3) not all ALL samples are
informative and several of them may contain high level of data
noise.

VI. CONCLUSION AND FUTURE WORK

In this paper, we extended the SSO-based technique for
imbalanced data sampling and ensemble learning. We eval-
uated the proposed methods on simulation studies and sev-
eral key bioinformatics applications. The improvement over
many traditional methods were confirmed statistically. We also
demonstrated that SSO-based techniques are able to select the
most useful samples. In bioinformatics applications, these are
often the most representative samples for a type of disease or
phenotype under study. Therefore, the interpretation of these
most frequently selected samples could have important bio-
logical implications. This has been illustrated in our analysis
of Leukemia dataset where most of AML samples were very
frequently selected by SSO procedure and were clustered into
two unique clusters.

Future work include (1) the analysis of ensemble diversity;
(2) the application of SSO to simultaneous feature and sample
selection; (3) learning in multiclass imbalanced data; and (4)
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Fig. 7. Hierarchical clustering of (a) 50% most frequently selected samples
in SSO procedure and (b) all samples from Leukemia dataset, using the top
100 genes filtered by BSS/WSS. The tree dendrograms are cut at the level of
three branches to form three separated clusters marked by blue (first cluster of
AML), red (second cluster of AML), and green (ALL cluster). Samples that
are clustered incorrectly (or indistinguishable) at the level of three branches
are marked in gray.

integrating SSO for ensemble-based approach in imbalanced
learning. First, it is known that GA and PSO may produce
highly correlated solutions which in our ensemble applica-
tion will result in base classifiers with identical predictions.
Therefore, in would be useful to explicitly measure ensemble
diversity in fitness function. Second, current applications of
SSO are limited to identify important samples only. By mod-
ifying the algorithm to incorporate feature selections into the
optimization procedure, we may identify the most important
samples conditioned on a unique subset of features. This
could be useful in classifying high-dimensional datasets such
as those generated from microarray and proteomics studies,
where the identification of molecular disease markers are
important for defining disease phenotypes. Third, ensemble
learning has been demonstrated to be effective in learning
from multiclass imbalanced data [39]. While only binary-
class datasets were considered in current experiment, the
minimization of cross-validation error and the application of
SSO could be extended to multiclass datasets. Lastly, recent
research shows that ensemble learning is an effective approach
for class imbalanced problem [40]. In current study, we treated
them as separate applications for SSO. Nevertheless, it is
interesting to incorporate SSO for simultaneous ensemble
and imbalanced learning. These potential applications will be
pursued in our future work.
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and classification of outer membrane proteins,” Nucleic Acids Research,
vol. 37, no. suppl 2, pp. W446–W451, 2009.

[26] P. Horton and K. Nakai, “A probabilistic classification system for
predicting the cellular localization sites of proteins,” in Proceedings of
the 4th ISMB. AAAI Press, 1996, pp. 109–115.

[27] T. Rani, S. Bhavani, and R. Bapi, “Analysis of e. coli promoter recog-
nition problem in dinucleotide feature space,” Bioinformatics, vol. 23,
no. 5, pp. 582–588, 2007.

[28] C. Pan, J. Olsen, H. Daub, and M. Mann, “Global effects of kinase
inhibitors on signaling networks revealed by quantitative phosphopro-
teomics,” Molecular & Cellular Proteomics, vol. 8, no. 12, pp. 2796–
2808, 2009.

[29] P. Hornbeck, I. Chabra, J. Kornhauser, E. Skrzypek, and B. Zhang,
“Phosphosite: A bioinformatics resource dedicated to physiological
protein phosphorylation,” Proteomics, vol. 4, no. 6, pp. 1551–1561,
2004.



THIS MANUSCRIPT HAS BEEN ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON CYBERNETICS 10

[30] J. Smith, J. Everhart, W. Dickson, W. Knowler, and R. Johannes, “Using
the adap learning algorithm to forecast the onset of diabetes mellitus,”
in Proceedings of the Annual Symposium on Computer Application in
Medical Care, 1988, pp. 261–265.

[31] R. Detrano, A. Janosi et al., “International application of a new probabil-
ity algorithm for the diagnosis of coronary artery disease,” The American
Journal of Cardiology, vol. 64, no. 5, pp. 304–310, 1989.

[32] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov,
H. Coller, M. Loh, J. Downing, M. Caligiuri et al., “Molecular classifi-
cation of cancer: class discovery and class prediction by gene expression
monitoring,” Science, vol. 286, no. 5439, pp. 531–537, 1999.

[33] X. Chen, S. Cheung, S. So, S. Fan, C. Barry, J. Higgins, K. Lai,
J. Ji, S. Dudoit, I. Ng et al., “Gene expression patterns in human liver
cancers,” Molecular Biology of the Cell, vol. 13, no. 6, pp. 1929–1939,
2002.

[34] S. Dudoit, J. Fridlyand, and T. Speed, “Comparison of discrimination
methods for the classification of tumors using gene expression data,”
Journal of the American Statistical Association, vol. 97, no. 457, pp.
77–87, 2002.

[35] U. Ohler, G. Liao, H. Niemann, G. Rubin et al., “Computational analysis
of core promoters in the drosophila genome,” Genome Biology, vol. 3,
no. 12, pp. 81–87, 2002.

[36] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
[Online]. Available: http://archive.ics.uci.edu/ml

[37] T. Fawcett, “An introduction to roc analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861–874, 2006.

[38] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
The Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[39] S. Wang and X. Yao, “Multiclass imbalance problems: Analysis and po-
tential solutions,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, vol. 42, no. 4, pp. 1119–1130, 2012.

[40] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera,
“A review on ensembles for the class imbalance problem: bagging-,
boosting-, and hybrid-based approaches,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, vol. 42, no. 4,
pp. 463–484, 2012.

Pengyi Yang received his PhD degree in Computer
Science from The University of Sydney, Australi-
a in 2012. He is currently a research follow in
Systems Biology Group, Biostatistics Branch, Na-
tional Institute of Environmental Health Sciences
(NIEHS), National Institute of Health (NIH), USA.
His research interests include the applications of ma-
chine learning algorithms and statistical modelings
in computational and systems biology. This work
was carried out mainly during his PhD candidature
while he was funded by the NICTA International

Postgraduate Award and the NICTA Research Project Award.

Paul D. Yoo is an Assistant Professor in the De-
partment of Electrical and Computer Engineering,
at Khalifa University of Science, Technology and
Research (KUSTAR). He was a Research Scientist
in the Centre for Distributed and High Performance
Computing, at the University of Sydney from 2008
to 2009, and PHD Researcher (Quantitative Re-
search) at the Capital Markets CRC initiated and
administered by the Australia Federal Department
for Education, Science and Training, from 2004 to
2008. His research is centered on the application of

various computer science and mathematical methods to the discovery of the
syntactic and semantic patterns in nucleic acid and amino acid sequences.
This includes the development of new sequence pattern extraction tools and
structural classification/prediction algorithms in 3D. In addition, he has carried
out research in the application of many such methods ranging from the
analysis of HIV gp120 glycosylation sites and the modeling of various post-
translational modifications of a protein.

Juanita Fernando is the Academic Convenor
BMedSc(Hons) with the Faculty of Medicine, Nurs-
ing and Health Sciences at Monash University. Chair
of the Health Sub-Committee with the Australian
Privacy Foundation and former Councillor with the
Australasian College of Health Informatics, Dr Fer-
nando’s research concerns biomedical informatics,
data exchange standards and information privacy and
security. Dr Fernando has developed a particular
emphasis on e-health and m-health tools and their
contribution to workflow methodologies in the health

sector.

Bing B. Zhou received the BS degree from Nan-
jing Institute of Technology, China and the PhD
degree in Computer Science from Australian Na-
tional University. He is currently an associate pro-
fessor at the University of Sydney. His research
interests include parallel/distributed computing, Grid
and cloud computing, peer-to-peer systems, parallel
algorithms, and bioinformatics. He has a number of
publications in leading international jounals and con-
ference proceedings. His research has been funded
by the Australian Research Council through several

Discovery Project grants.

Zili Zhang is a professor at Southwest University,
Chongqing, China, and a senior lecturer at Deakin
University, Australia. He received his BSc from
Sichuan University, MEng from Harbin Institute of
Technology, and PhD from Deakin University, all
in computing. He authored or co-authored more
than 100 refereed papers in international journal-
s or conference proceedings, 1 monograph, and
4 textbooks. His research interests include agent-
based computing, big data analysis, and agent-data
mining interaction and integration. Contact him at

zzhang@deakin.edu.au or zhangzl@swu.edu.cn.

Albert Y. Zomaya is currently the Chair Profes-
sor of High Performance Computing & Networking
and Australian Research Council Professorial Fellow
in the School of Information Technologies, The
University of Sydney. He is also the Director of
the Centre for Distributed and High Performance
Computing which was established in late 2009. He is
the author/coauthor of seven books, more than 400
publications in technical journals and conferences,
and the editor of 14 books and 17 conference vol-
umes. He is currently the Editor in Chief of the IEEE

Trans. on Computers and serves as an associate editor for 19 journals including
some of the leading journals in the field. Professor Zomaya was the Chair the
IEEE Technical Committee on Parallel Processing (19992003) and currently
serves on its executive committee. He also serves on the advisory board of
the IEEE Technical Committee on Scalable Computing, the advisory board of
the Machine Intelligence Research Labs. Professor Zomaya served as General
and Program Chair for more than 60 events and served on the committees of
more than 600 ACM and IEEE conferences. Professor Zomaya is a Fellow
of the IEEE, AAAS, the Institution of Engineering and Technology (U.K.),
a Distinguished Engineer of the ACM and a Chartered Engineer (CEng). He
received the 1997 Edgeworth David Medal from the Royal Society of New
South Wales for outstanding contributions to Australian Science. He is also
the recipient of the IEEE Computer Societys Meritorious Service Award and
Golden Core Recognition in 2000 and 2006, respectively. Also, he received
the IEEE TCPP Outstanding Service Award and the IEEE TCSC Medal for
Excellence in Scalable Computing, both in 2011. His research interests are in
the areas of parallel and distributed computing and complex systems.


